
Integration strategy 
We used the Sandwich Integration Strategy to integrate the various components of 

our application. We started by building the low-level classes which are used as the base level 
data storage objects in our application. The Course class is the most basic. It consists of data 
about an individual course, including the course code code, credit hours, prerequisites, 
corequisites, and seasons offered, and has no dependencies on any other classes. We then 
worked our way up from the bottom, building the Major and Semester classes, which each store 
lists of Course objects, then ultimately Plan classes which utilizes all of the classes built before 
it. This is the bottom-up part of sandwich integration, as these classes represent our backend 
and are furthest removed from user interaction. These components were tested initially using 
simple drivers, such as hard-coded construction of a test plan instead of it being built via user 
interaction. 

Meanwhile, top-down integration was also being performed simultaneously on the 
frontend with the ArrowRender and Arrow classes, portions of the Executive class, and also the 
Bootstrap powered HTML. These components were built long before the backend data storage 
classes described above were ready, so initial testing was performed using stubs: simplified and 
hard-coded examples of what these future components would be. 

Finally, the key to sandwich integration is where the bottom-up and top-down 
integrations meet in the middle. For us, this occurred in the Executive class, which linked 
together the high level user interface with the low-level data storage objects. We drew the line 
between bottom-up and top-down based largely on the role of the classes – whether they were 
for the high level frontend user interface or low-level backend data storage. 

 


